Mathematical Proofs

J. 1 The Free Space Condition

$$
\omega_{b}^{a}=-\kappa \epsilon^{a}{ }_{b c} q^{c}
$$

This fundamental condition is a solution of:

$$
\begin{gather*}
R_{b}^{a} \wedge q^{b}=\omega^{a}{ }_{b} \wedge T^{b} \tag{J.1}\\
\left(D \wedge \omega^{a}{ }_{b}\right) \wedge q^{b}=\omega^{a}{ }_{b} \wedge\left(D \wedge q^{b}\right) \tag{J.2}\\
\left(d \wedge \omega^{a}{ }_{b}\right) \wedge q^{b}+\left(\omega^{a}{ }_{c} \wedge \omega^{c}{ }_{b}\right) \wedge q^{b}=\omega^{a}{ }_{b} \wedge\left(d \wedge q^{b}\right)+\omega^{a}{ }_{b} \wedge\left(\omega^{b}{ }_{c} \wedge q^{c}\right) \tag{J.3}
\end{gather*}
$$

To Prove:

$$
\begin{equation*}
\left(d \wedge \omega^{a}{ }_{b}\right) \wedge q^{b}=\omega_{b}^{a} \wedge\left(d \wedge q^{b}\right) \tag{J.4}
\end{equation*}
$$

Proof for $a=1$

$$
\begin{equation*}
\left(d \wedge \omega_{2}^{1}\right) \wedge q^{2}+\left(d \wedge \omega_{3}^{1}\right) \wedge q^{3}=\omega_{2}^{1} \wedge\left(d \wedge q^{2}\right)+\omega_{3}^{1} \wedge\left(d \wedge q^{3}\right) \tag{J.5}
\end{equation*}
$$

Eqn. (J.5)

$$
\begin{gather*}
\omega_{2}^{1}=-\kappa \epsilon_{23}^{1} q^{3}=\kappa \epsilon_{123} q^{3}=\kappa q^{3} \tag{J.6}\\
\omega_{3}^{1}=-\kappa \epsilon_{23}^{1} q^{2}=\kappa \epsilon_{132} q^{2}=-\kappa q^{2} \tag{J.7}
\end{gather*}
$$

i.e.

$$
\begin{align*}
\left(d \wedge q^{3}\right) \wedge q^{2}- & \left(d \wedge q^{2}\right) \wedge q^{3}=q^{3} \wedge\left(d \wedge q^{2}\right)-q^{2} \wedge\left(d \wedge q^{3}\right) \tag{J.8}\\
\Longrightarrow & \left(d \wedge q^{3}\right) \wedge q^{2}=-q^{2} \wedge\left(d \wedge q^{3}\right) \tag{J.9}\\
& -\left(d \wedge q^{2}\right) \wedge q^{3}=q^{3} \wedge\left(d \wedge q^{2}\right)
\end{align*}
$$

To prove

$$
\begin{equation*}
\left(\omega_{c}^{a}{ }_{c} \wedge \omega_{b}^{c}\right) \wedge q^{b}=\omega_{b}^{a} \wedge\left(\omega_{c}^{b} \wedge q^{c}\right) \tag{J.10}
\end{equation*}
$$

Proof for $a=1, b=2, c=3$;

$$
\begin{equation*}
\left(\omega_{3}^{1} \wedge \omega_{2}^{3}\right) \wedge q^{2}=\omega_{2}^{1} \wedge\left(\omega_{3}^{2} \wedge q^{3}\right) \tag{J.11}
\end{equation*}
$$

where

$$
\begin{gathered}
\omega^{1}{ }_{2}=\kappa q^{3} ; \quad \omega_{3}^{1}=-\kappa q^{2} \\
\omega^{3}{ }_{2}=-\kappa q^{1} ; \quad \omega_{3}^{2}=\kappa q^{1}
\end{gathered}
$$

therefore

$$
\left(q^{2} \wedge q^{1}\right) \wedge q^{2}=-q^{3} \wedge\left(q^{1} \wedge q^{3}\right)
$$

i.e.

$$
\begin{align*}
q^{3} \wedge q^{2} & =-q^{3} \wedge\left(-q^{2}\right) \\
& =q^{3} \wedge q^{2} \tag{J.12}
\end{align*}
$$

For $\mathrm{O}(3)$ electrodynamics we choose:

$$
\begin{equation*}
\omega_{b}^{a}=-\frac{1}{2} \kappa \epsilon_{b c}^{a} q^{c} \tag{J.13}
\end{equation*}
$$

in the structure relation:

$$
\begin{equation*}
D \wedge q^{a}=d \wedge q^{a}+\omega^{a}{ }_{b} \wedge q^{b} \tag{J.14}
\end{equation*}
$$

Proof For $a=1$:

$$
\begin{align*}
D \wedge q^{1}= & d \wedge q^{1}+\frac{1}{2}\left(\epsilon_{23}^{1} q^{3} \wedge q^{2}+\epsilon_{32}^{1} q^{2} \wedge q^{3}\right) \tag{J.15}\\
& D \wedge q^{1}=d \wedge q^{1}+\kappa q^{2} \wedge q^{3}
\end{align*}
$$

In the $\mathrm{O}(3)$ circular complex basis this gives $\mathrm{O}(3)$ electrodynamics.
This allows the tetrad of the free field to be identified as the potential, and also the spin connection. $\mathrm{O}(3)$ electrodynamics is therefore a fundamental theory of general relativity.

J. 2 The Tetrad Postulate

The tetrad postulate follows from the fact that a tensor is independent of the way it is written. The postulate follows from a consideration of the covariant derivative of a vector in two different bases. We denote these by J. 16 and J. 17. thus:

$$
\begin{equation*}
(D X)_{1}=(D X)_{2} \tag{J.16}
\end{equation*}
$$

It follows that:

$$
\begin{equation*}
D_{\nu} q^{a}{ }_{\mu}=0 \tag{J.17}
\end{equation*}
$$

For those interested a detailed proof is given as follows but eqn. (J.16) is enough to know where the tetrad postulate comes from.

Detailed Proof

In the coordinate basis (see Carroll(3.129))

$$
\begin{align*}
D X & =\left(D_{\mu} X^{\nu}\right) d x^{\mu} \otimes \partial_{\nu} \\
& =\left(\partial_{\mu} X^{\nu}+\Gamma_{\mu \lambda}^{\nu} X^{\lambda}\right) d x^{\mu} \otimes \partial_{\nu} \tag{J.18}
\end{align*}
$$

In the mixed basis:

$$
\begin{gather*}
D X=\left(D_{\mu} X^{a}\right) d x^{\mu} \otimes \hat{e}_{(a)} \\
=\left(\partial_{\mu} X^{a}+\omega^{a}{ }_{\mu b} X^{b}\right) d x^{\mu} \otimes \hat{e}_{(a)} \tag{J.19}\\
=\left(\partial_{\mu}\left(q^{a}{ }_{\nu} X^{\nu}\right)+\omega^{a}{ }_{\mu b} q^{b}{ }_{\lambda} X^{\lambda}\right) d x^{\mu} \otimes\left(q^{\sigma}{ }_{a} \partial_{\sigma}\right) \tag{J.20}\\
=q^{\sigma}{ }_{a}\left(q^{a}{ }_{\nu} \partial_{\mu} X^{\nu}+X^{\nu} \partial_{\mu} q^{a}{ }_{\nu}+\omega^{a}{ }_{\mu b} q^{b}{ }_{\lambda} X^{\lambda}\right) d x^{\mu} \otimes \partial_{\sigma}
\end{gather*}
$$

where we have used the commutator rule. Now switch σ to μ and use:

$$
\begin{equation*}
q_{a}^{\nu} q_{\nu}^{a}=1 \tag{J.21}
\end{equation*}
$$

to obtain:

$$
\begin{equation*}
D X=\left(\partial_{\mu} X^{\nu}+q_{a}^{\nu} \partial_{\mu} q_{\lambda}^{a} X^{\lambda}+q_{a}^{\nu} q_{\lambda}^{b} \omega_{\mu b}^{a} X^{\lambda}\right) d x^{\mu} \otimes \partial_{\nu} \tag{J.22}
\end{equation*}
$$

Now compare eqn. (J.18) and (J.22) to give:

$$
\begin{equation*}
\Gamma_{\mu \lambda}^{\nu}=q_{a}^{\nu} \partial_{\mu} q_{\lambda}^{a}+q_{a}^{\nu} q_{\lambda}^{b} \omega_{\mu b}^{a} \tag{J.23}
\end{equation*}
$$

multiply both sides of eqn.(J.23) by $q^{a}{ }_{\nu}$:

$$
\begin{equation*}
q_{\nu}^{a} \Gamma_{\mu \lambda}^{\nu}=\partial_{\mu} q_{\lambda}^{a}+q_{\lambda}^{b} \omega_{\mu b}^{a} \tag{J.24}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
D_{\mu} q_{\lambda}^{a}=\partial_{\mu} q_{\lambda}^{a}+\omega_{\mu b}^{a} q_{\lambda}^{b}-\Gamma_{\mu \lambda}^{\nu} q_{\nu}^{a}=0 \tag{J.25}
\end{equation*}
$$

Eqn. (J.25) is known as the tetrad postulate, and is true for all connections.

Meaning of the Tetrad Postulate

The tetrad postulate means that the basis chosen for $D X$ does not affect the result. The tetrad postulate originates in the definition of the tetrad itself:

$$
\begin{equation*}
V^{a}=q^{a}{ }_{\mu} V^{\mu} \tag{J.26}
\end{equation*}
$$

where a refers to the tangent spacetime and μ to the base manifold.

J. 3 The Evans Lemma

The Evans Lemma is the direct result of the tetrad postulate of differential geometry:

$$
\begin{equation*}
D_{\mu} q_{\lambda}^{a}=\partial_{\mu} q_{\lambda}^{a}+\omega_{\mu b}^{a} q_{\lambda}^{b}-\Gamma_{\mu \lambda}^{\nu} q_{\nu}^{a}=0 \tag{J.27}
\end{equation*}
$$

using the notation of the text. It follows from eqn. (J.27) that:

$$
\begin{equation*}
D^{\mu}\left(D_{\mu} q_{\lambda}^{a}\right)=\partial^{\mu}\left(D_{\mu} q_{\lambda}^{a}\right)=0 \tag{J.28}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\partial^{\mu}\left(\partial_{\mu} q_{\lambda}^{a}+\omega_{\mu b}^{a} q_{\lambda}^{b}-\Gamma_{\mu \lambda}^{\nu} q_{\nu}^{a}\right)=0, \tag{J.29}
\end{equation*}
$$

or

$$
\begin{equation*}
\square q_{\lambda}^{a}=\partial^{\mu}\left(\Gamma_{\mu \lambda}^{\nu} q_{\nu}^{a}\right)-\partial^{\mu}\left(\omega_{\mu b}^{a} q_{\lambda}^{b}\right) . \tag{J.30}
\end{equation*}
$$

Define:

$$
\begin{equation*}
R q_{\lambda}^{a}:=\partial^{\mu}\left(\Gamma_{\mu \lambda}^{\nu} q_{\nu}^{a}\right)-\partial^{\mu}\left(\omega_{\mu b}^{a} q_{\lambda}^{b}\right) \tag{J.31}
\end{equation*}
$$

to obtain the Evans Lemma:

$$
\begin{equation*}
\square q^{a}{ }_{\lambda}=R q^{a}{ }_{\lambda} \tag{J.32}
\end{equation*}
$$

